Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Intervalo de año de publicación
1.
Conserv Biol ; : e14241, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38450847

RESUMEN

Behavioral changes are often animals' first responses to environmental change and may act as a bellwether for population viability. Nonetheless, most studies of habitat conversion focus on changes in species occurrences or abundances. We analyzed >14,000 behavioral observations across 55 bird species in communities in northwestern Costa Rica to determine how land use affects reproductive, foraging, and other passive kinds of behaviors not associated with either foraging or reproduction. Specifically, we quantified differences in behaviors between farms, privately owned forests, and protected areas and implemented a novel modeling framework to account for variation in detection among behaviors. This framework entailed estimating abundances of birds performing different behaviors while allowing detection probabilities of individuals to vary by behavior. Birds were 1.2 times more likely to exhibit reproductive behaviors in forest than in agriculture and 1.5 times more likely to exhibit reproductive behaviors in protected areas than in private forests. Species were not always most abundant in the habitats where they were most likely to exhibit foraging or reproductive behaviors. Finally, species of higher conservation concern were less abundant in agriculture than in forest. Together, our results highlight the importance of behavioral analyses for elucidating the conservation value of different land uses.


Efectos de la agricultura y las reservas naturales sobre el comportamiento de las aves en el noroeste de Costa Rica Resumen Los cambios conductuales suelen ser la primera respuesta de los animales ante el cambio ambiental y pueden funcionar como un barómetro para la viabilidad poblacional. Sin embargo, la mayoría de los estudios sobre la conversión del hábitat se enfocan en cambios en la presencia o abundancia de las especies. Analizamos más de 14,000 observaciones conductuales en las comunidades de 55 especies de aves del noroeste de Costa Rica para determinar cómo el uso de suelo afectó el comportamiento reproductivo, de forrajeo y otras formas pasivas no asociadas con las dos anteriores. En específico, cuantificamos las diferencias en el comportamiento entre granjas, bosques de propiedad privada y áreas protegidas e implementamos un marco novedoso de modelado para justificar la variación en la detección entre los comportamientos. Este marco implicó estimar la abundancia de aves que realizaban diferentes comportamientos mientras permitía que variaran las probabilidades de detección de individuos según el comportamiento. Fue 1.2 veces más probable que las aves exhibieran comportamiento reproductivo en el bosque que en las zonas agrícolas y 1.5 veces más probable que exhibieran estos comportamientos en las áreas protegidas que en los bosques privados. Las especies no siempre fueron las más abundantes en los hábitats en donde era más probable que exhibieran comportamientos reproductivos o de forrajeo. Por último, las especies de mayor preocupación para la conservación fueron menos abundantes en las zonas agrícolas que en los bosques. En conjunto, nuestros resultados resaltan la importancia del análisis conductual para ilustrar el valor de conservación de los diferentes usos de suelo.

2.
Proc Natl Acad Sci U S A ; 120(50): e2304411120, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38048469

RESUMEN

Addressing the ongoing biodiversity crisis requires identifying the winners and losers of global change. Species are often categorized based on how they respond to habitat loss; for example, species restricted to natural environments, those that most often occur in anthropogenic habitats, and generalists that do well in both. However, species might switch habitat affiliations across time and space: an organism may venture into human-modified areas in benign regions but retreat into thermally buffered forested habitats in areas with high temperatures. Here, we apply community occupancy models to a large-scale camera trapping dataset with 29 mammal species distributed over 2,485 sites across the continental United States, to ask three questions. First, are species' responses to forest and anthropogenic habitats consistent across continental scales? Second, do macroclimatic conditions explain spatial variation in species responses to land use? Third, can species traits elucidate which taxa are most likely to show climate-dependent habitat associations? We found that all species exhibited significant spatial variation in how they respond to land-use, tending to avoid anthropogenic areas and increasingly use forests in hotter regions. In the hottest regions, species occupancy was 50% higher in forested compared to open habitats, whereas in the coldest regions, the trend reversed. Larger species with larger ranges, herbivores, and primary predators were more likely to change their habitat affiliations than top predators, which consistently affiliated with high forest cover. Our findings suggest that climatic conditions influence species' space-use and that maintaining forest cover can help protect mammals from warming climates.


Asunto(s)
Ecosistema , Mamíferos , Animales , Humanos , Temperatura , Bosques , Biodiversidad , América del Norte , Conservación de los Recursos Naturales
3.
Ecol Evol ; 13(12): e10761, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38107425

RESUMEN

Many fire-prone forests are experiencing wildfires that burn outside the historical range of variation in extent and severity. These fires impact pollinators and the ecosystem services they provide, but how the effects of fire are mediated by burn severity in different habitats is not well understood. We used generalized linear mixed models in a Bayesian framework to model the abundance of pollinators as a function of burn severity, habitat, and floral resources in post-fire, mid-elevation, conifer forest, and meadow in the Sierra Nevada, California. Although most species-level effects were not significant, we found highly consistent negative impacts of burn severity in meadows where pollinators were most abundant, with only hummingbirds and some butterfly families responding positively to burn severity in meadows. Moderate-severity fire tended to increase the abundance of most pollinator taxa in upland forest habitat, indicating that even in large fires that burn primarily at high- and moderate-severity patches may be associated with improved habitat conditions for pollinator species in upland forest. Nearly all pollinator taxa responded positively to floral richness but not necessarily to floral abundance. Given that much of the Sierra Nevada is predicted to burn at high severity, limiting high-severity effects in meadow and upland habitats may help conserve pollinator communities whereas low- to moderate-severity fire may be needed in both systems.

4.
Animals (Basel) ; 14(1)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38200853

RESUMEN

Previous research has established that some models of robotic lawn mowers are potentially harmful to hedgehogs. As the market for robotic lawn mowers is expanding rapidly and the populations of European hedgehogs (Erinaceus europaeus) are in decline, it is important to investigate this risk further to understand the potential threat which some robotic lawn mowers may pose to hedgehogs. We tested 19 models of robotic lawn mowers in collision with hedgehog cadavers to measure their effect on hedgehogs. Our results showed that some models of robotic lawn mowers may injure hedgehogs, whereas others are not harmful to them. Apart from one single incidence, all robotic lawn mowers had to physically touch the hedgehog carcasses to detect them. Larger hedgehog cadavers were less likely to be "injured", with height being the most influential measure of size. The firmness of the tested hedgehog cadavers (frozen or thawed) did not influence the outcome of the collision tests. Neither the position of the hedgehog cadavers nor the selected technical features of the lawn mowers affected the probability of injury. Based on the results, we designed a standardised safety test to measure the effect of a specific model of robotic lawn mower on hedgehogs.

5.
Ecol Evol ; 12(9): e9337, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36188514

RESUMEN

To offset the declining timber supply by shifting towards more sustainable forestry practices, industrial tree plantations are expanding in tropical production forests. The conversion of natural forests to tree plantation is generally associated with loss of biodiversity and shifts towards more generalist and disturbance tolerant communities, but effects of mixed-landuse landscapes integrating natural and plantation forests remain little understood. Using camera traps, we surveyed the medium-to-large bodied terrestrial wildlife community across two mixed-landuse forest management areas in Sarawak, Malaysia Borneo which include areas dedicated to logging of natural forests and adjacent planted Acacia forests. We analyzed data from a 25-wildlife species community using a Bayesian community occupancy model to assess species richness and species-specific occurrence responses to Acacia plantations at a broad scale, and to remote-sensed local habitat conditions within the different forest landuse types. All species were estimated to occur in both landuse types, but species-level percent area occupied and predicted average local species richness were slightly higher in the natural forest management areas compared to licensed planted forest management areas. Similarly, occupancy-based species diversity profiles and defaunation indices for both a full community and only threatened and endemic species suggested the diversity and occurrence were slightly higher in the natural forest management areas. At the local scale, forest quality was the most prominent predictor of species occurrence. These associations with forest quality varied among species but were predominantly positive. Our results highlight the ability of a mixed-landuse landscape with small-scale Acacia plantations embedded in natural forests to retain terrestrial wildlife communities while providing an alternate source of timber. Nonetheless, there was a tendency towards reduced biodiversity in planted forests, which would likely be more pronounced in plantations that are larger or embedded in a less natural matrix.

6.
Sci Data ; 9(1): 384, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35798761

RESUMEN

Wildfire dynamics are changing around the world and understanding their effects on ecological communities and landscapes is urgent and important. We report detailed food webs for unburned, low-to-moderate and high severity burned habitats three years post-fire in the Eldorado National Forest, California. The cumulative cross-habitat food web contains 3,084 ontogenetic stages (nodes) or plant parts comprising 849 species (including 107 primary producers, 634 invertebrates, 94 vertebrates). There were 178,655 trophic interactions between these nodes. We provide information on taxonomy, body size, biomass density and trophic interactions under each of the three burn conditions. We detail 19 sampling methods deployed across 27 sites (nine in each burn condition) used to estimate the richness, body size, abundance and biomass density estimates in the node lists. We provide the R code and raw data to estimate summarized node densities and assign trophic links.

7.
Ecol Appl ; 32(8): e2698, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35748488

RESUMEN

The associations of habitat area and fragmentation with species richness long have been major topics within community ecology. Recent discussion has focused on properly assessing fragmentation independent of habitat area (fragmentation per se), and on whether fragmentation has significant negative or positive associations with species richness. We created a novel, multiple-region, N-mixture community model (MNCM) to examine the relations of riparian area and fragmentation with species richness of breeding birds in mountain ranges within the Great Basin, Nevada, USA. Our MNCM accounts for imperfect detection in count data at the survey-point level while allowing comparisons of species richness among regions in which those points are embedded. We used individual canyons within mountain ranges as regions in our model and measured riparian area and the Normalized Landscape Shape Index, a metric of fragmentation that is independent of total riparian area. We found that riparian area, but not its fragmentation, was a primary predictor of canyon-level species richness of both riparian obligates and all species. The relationship between riparian area and riparian obligate species richness was nonlinear: canyons with ≥25 ha woody riparian vegetation had relatively high species richness, whereas species richness was considerably lower in canyons with <25 ha. Our MNCM can be used to calculate other metrics of diversity that require abundance estimates. For example, Simpson's evenness of riparian obligate species had a weak negative association with riparian area and was not associated with fragmentation. Projections of future riparian contraction suggested that decreases in species richness are likely to be greatest in canyons that currently have moderate (~10-25 ha) amounts of riparian vegetation. Our results suggest that if a goal of management is to maximize the species richness of breeding birds in montane riparian areas in the Great Basin, it may be more effective to focus on total habitat area than on fragmentation of patches within canyons, and that canyons with at least moderate amounts of riparian vegetation should be prioritized.


Asunto(s)
Biodiversidad , Ríos , Animales , Fitomejoramiento , Ecosistema , Aves
8.
Ecol Evol ; 12(5): e8918, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35600681

RESUMEN

The frequency of large, high-severity "mega-fires" has increased in recent decades, with numerous consequences for forest ecosystems. In particular, small mammal communities are vulnerable to post-fire shifts in resource availability and play critical roles in forest ecosystems. Inconsistencies in previous observations of small mammal community responses to fire severity underscore the importance of examining mechanisms regulating the effects of fire severity on post-fire recovery of small mammal communities. We compared small mammal abundance, diversity, and community structure among habitats that burned at different severities, and used vegetation characteristics and small mammal functional traits to predict community responses to fire severity three years after one mega-fire in the Sierra Nevada, California. Using a model-based fourth-corner analysis, we examined how interactions between vegetation variables and small mammal traits associated with their resource use were associated with post-fire small mammal community structure among fire severity categories. Small mammal abundance was similar across fire severity categories, but diversity decreased and community structure shifted as fire severity increased. Differences in small mammal communities were large only between unburned and high-severity sites. Three highly correlated fire-dependent vegetation variables affected by fire and the volume of soft coarse woody debris were associated with small mammal community structures. Furthermore, we found that interactions between vegetation variables and three small mammal traits (feeding guild, primary foraging mode, and primary nesting habit) predicted community structure across fire severity categories. We concluded that resource use was important in regulating small mammal recovery after the fire because vegetation provided required resources to small mammals as determined by their functional traits. Given the mechanistic nature of our analyses, these results may be applicable to other fire-prone forest systems, although it will be important to conduct studies across large biogeographic regions and over long post-fire time periods to assess generality.

9.
Ecol Appl ; 32(6): e2632, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35403280

RESUMEN

Understanding how and why animals use the environments where they occur is both foundational to behavioral ecology and essential to identify critical habitats for species conservation. However, some behaviors are more difficult to observe than others, which can bias analyses of raw observational data. To our knowledge, no method currently exists to model how animals use different environments while accounting for imperfect behavior-specific detection probability. We developed an extension of a binomial N-mixture model (hereafter the behavior N-mixture model) to estimate the probability of a given behavior occurring in a particular environment while accounting for imperfect detection. We then conducted a simulation to validate the model's ability to estimate the effects of environmental covariates on the probabilities of individuals performing different behaviors. We compared our model to a naïve model that does not account for imperfect detection, as well as a traditional N-mixture model. Finally, we applied the model to a bird observation data set in northwest Costa Rica to quantify how three species behave in forests and farms. Simulations and sensitivity analyses demonstrated that the behavior N-mixture model produced unbiased estimates of behaviors and their relationships with predictor variables (e.g., forest cover, habitat type). Importantly, the behavior N-mixture model accurately characterized uncertainty, unlike the naïve model, which often suggested erroneous effects of covariates on behaviors. When applied to field data, the behavior N-mixture model suggested that Hoffmann's woodpecker (Melanerpes hoffmanii) and Inca dove (Columbina inca) behaved differently in forested versus agricultural habitats, while turquoise-browed motmot (Eumomota superciliosa) did not. Thus, the behavior N-mixture model can help identify habitats that are essential to a species' life cycle (e.g., where individuals nest, forage) that nonbehavioral models would miss. Our model can greatly improve the appropriate use of behavioral survey data and conclusions drawn from them. In doing so, it provides a valuable path forward for assessing the conservation value of alternative habitat types.


Asunto(s)
Aves , Ecosistema , Agricultura , Animales , Ecología , Bosques
10.
Ecol Evol ; 11(18): 12259-12284, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34594498

RESUMEN

Wildfires in many western North American forests are becoming more frequent, larger, and severe, with changed seasonal patterns. In response, coniferous forest ecosystems will transition toward dominance by fire-adapted hardwoods, shrubs, meadows, and grasslands, which may benefit some faunal communities, but not others. We describe factors that limit and promote faunal resilience to shifting wildfire regimes for terrestrial and aquatic ecosystems. We highlight the potential value of interspersed nonforest patches to terrestrial wildlife. Similarly, we review watershed thresholds and factors that control the resilience of aquatic ecosystems to wildfire, mediated by thermal changes and chemical, debris, and sediment loadings. We present a 2-dimensional life history framework to describe temporal and spatial life history traits that species use to resist wildfire effects or to recover after wildfire disturbance at a metapopulation scale. The role of fire refuge is explored for metapopulations of species. In aquatic systems, recovery of assemblages postfire may be faster for smaller fires where unburned tributary basins or instream structures provide refuge from debris and sediment flows. We envision that more-frequent, lower-severity fires will favor opportunistic species and that less-frequent high-severity fires will favor better competitors. Along the spatial dimension, we hypothesize that fire regimes that are predictable and generate burned patches in close proximity to refuge will favor species that move to refuges and later recolonize, whereas fire regimes that tend to generate less-severely burned patches may favor species that shelter in place. Looking beyond the trees to forest fauna, we consider mitigation options to enhance resilience and buy time for species facing a no-analog future.

11.
Ecol Evol ; 11(7): 3422-3434, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33841794

RESUMEN

Identifying mechanisms of population change is fundamental for conserving small and declining populations and determining effective management strategies. Few studies, however, have measured the demographic components of population change for small populations of mammals (<50 individuals). We estimated vital rates and trends in two adjacent but genetically distinct, threatened brown bear (Ursus arctos) populations in British Columbia, Canada, following the cessation of hunting. One population had approximately 45 resident bears but had some genetic and geographic connectivity to neighboring populations, while the other population had <25 individuals and was isolated. We estimated population-specific vital rates by monitoring survival and reproduction of telemetered female bears and their dependent offspring from 2005 to 2018. In the larger, connected population, independent female survival was 1.00 (95% CI: 0.96-1.00) and the survival of cubs in their first year was 0.85 (95% CI: 0.62-0.95). In the smaller, isolated population, independent female survival was 0.81 (95% CI: 0.64-0.93) and first-year cub survival was 0.33 (95% CI: 0.11-0.67). Reproductive rates did not differ between populations. The large differences in age-specific survival estimates resulted in a projected population increase in the larger population (λ = 1.09; 95% CI: 1.04-1.13) and population decrease in the smaller population (λ = 0.84; 95% CI: 0.72-0.95). Low female survival in the smaller population was the result of both continued human-caused mortality and an unusually high rate of natural mortality. Low cub survival may have been due to inbreeding and the loss of genetic diversity common in small populations, or to limited resources. In a systematic literature review, we compared our population trend estimates with those reported for other small populations (<300 individuals) of brown bears. Results suggest that once brown bear populations become small and isolated, populations rarely increase and, even with intensive management, recovery remains challenging.

12.
Ecol Appl ; 31(2): e02249, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33140872

RESUMEN

Community occupancy models estimate species-specific parameters while sharing information across species by treating parameters as sampled from a common distribution. When communities consist of discrete groups, shrinkage of estimates toward the community mean can mask differences among groups. Infinite-mixture models using a Dirichlet process (DP) distribution, in which the number of latent groups is estimated from the data, have been proposed as a solution. In addition to community structure, these models estimate species similarity, which allows testing hypotheses about whether traits drive species response to environmental conditions. We develop a community occupancy model (COM) using a DP distribution to model species-level parameters. Because clustering algorithms are sensitive to dimensionality and distinctiveness of clusters, we conducted a simulation study to explore performance of the DP-COM with different dimensions (i.e., different numbers of model parameters with species-level DP random effects) and under varying cluster differences. Because the DP-COM is computationally expensive, we compared its estimates to a COM with a normal random species effect. We further applied the DP-COM model to a bird data set from Uganda. Estimates of the number of clusters and species cluster identity improved with increasing difference among clusters and increasing dimensions of the DP; but the number of clusters was always overestimated. Estimates of number of sites occupied and species and community-level covariate coefficients on occupancy probability were generally unbiased with (near-) nominal 95% Bayesian Credible Interval coverage. Accuracy of estimates from the normal and the DP-COM was similar. The DP-COM clustered 166 bird species into 27 clusters regarding their affiliation with open or woodland habitat and distance to oil wells. Estimates of covariate coefficients were similar between a normal and the DP-COM. Except sunbirds, species within a family were not more similar in their response to these covariates than the overall community. Given that estimates were consistent between the normal and the DP-COM, and considering the computational burden for the DP models, we recommend using the DP-COM only when the analysis focuses on community structure and species similarity, as these quantities can only be obtained under the DP-COM.


Asunto(s)
Algoritmos , Ecosistema , Teorema de Bayes , Simulación por Computador
13.
R Soc Open Sci ; 7(4): 190717, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32431857

RESUMEN

The persistent high deforestation rate and fragmentation of the Amazon forests are the main threats to their biodiversity. To anticipate and mitigate these threats, it is important to understand and predict how species respond to the rapidly changing landscape. The short-eared dog Atelocynus microtis is the only Amazon-endemic canid and one of the most understudied wild dogs worldwide. We investigated short-eared dog habitat associations on two spatial scales. First, we used the largest record database ever compiled for short-eared dogs in combination with species distribution models to map species habitat suitability, estimate its distribution range and predict shifts in species distribution in response to predicted deforestation across the entire Amazon (regional scale). Second, we used systematic camera trap surveys and occupancy models to investigate how forest cover and forest fragmentation affect the space use of this species in the Southern Brazilian Amazon (local scale). Species distribution models suggested that the short-eared dog potentially occurs over an extensive and continuous area, through most of the Amazon region south of the Amazon River. However, approximately 30% of the short-eared dog's current distribution is expected to be lost or suffer sharp declines in habitat suitability by 2027 (within three generations) due to forest loss. This proportion might reach 40% of the species distribution in unprotected areas and exceed 60% in some interfluves (i.e. portions of land separated by large rivers) of the Amazon basin. Our local-scale analysis indicated that the presence of forest positively affected short-eared dog space use, while the density of forest edges had a negative effect. Beyond shedding light on the ecology of the short-eared dog and refining its distribution range, our results stress that forest loss poses a serious threat to the conservation of the species in a short time frame. Hence, we propose a re-assessment of the short-eared dog's current IUCN Red List status (Near Threatened) based on findings presented here. Our study exemplifies how data can be integrated across sources and modelling procedures to improve our knowledge of relatively understudied species.

14.
Commun Biol ; 2: 396, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31701025

RESUMEN

Habitat degradation and hunting have caused the widespread loss of larger vertebrate species (defaunation) from tropical biodiversity hotspots. However, these defaunation drivers impact vertebrate biodiversity in different ways and, therefore, require different conservation interventions. We conducted landscape-scale camera-trap surveys across six study sites in Southeast Asia to assess how moderate degradation and intensive, indiscriminate hunting differentially impact tropical terrestrial mammals and birds. We found that functional extinction rates were higher in hunted compared to degraded sites. Species found in both sites had lower occupancies in the hunted sites. Canopy closure was the main predictor of occurrence in the degraded sites, while village density primarily influenced occurrence in the hunted sites. Our findings suggest that intensive, indiscriminate hunting may be a more immediate threat than moderate habitat degradation for tropical faunal communities, and that conservation stakeholders should focus as much on overhunting as on habitat conservation to address the defaunation crisis.


Asunto(s)
Biodiversidad , Clima Tropical , Animales , Asia Sudoriental , Teorema de Bayes , Aves , Conservación de los Recursos Naturales/estadística & datos numéricos , Conservación de los Recursos Naturales/tendencias , Ecosistema , Extinción Biológica , Mamíferos , Dinámica Poblacional/estadística & datos numéricos , Dinámica Poblacional/tendencias , Especificidad de la Especie
16.
PLoS One ; 13(12): e0208726, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30571710

RESUMEN

Accurate estimates of population abundance are a critical component of species conservation efforts in order to monitor the potential recovery of populations. Capture-mark-recapture (CMR) is a widely used approach to estimate population abundance, yet social species moving in groups violate the assumption of CMR approaches that all individuals in the population are detected independently. We developed a closed CMR model that addresses an important characteristic of group-living species-that individual-detection probability typically is conditional on group detection. Henceforth termed the Two-Step model, this approach first estimates group-detection probability and then-conditional on group detection-estimates individual-detection probability for individuals within detected groups. Overall abundance is estimated assuming that undetected groups have the same average group size as detected groups. We compared the performance of this Two-Step CMR model to a conventional (One-Step) closed CMR model that ignored group structure. We assessed model sensitivity to variation in both group- and individual-detection probability. Both models returned overall unbiased estimates of abundance, but the One-Step model returned deceptively narrow Bayesian confidence intervals (BCI) that failed to encompass the correct population abundance an average 52% of the time. Contrary, under the Two-Step model, CI coverage was on average 96%. Both models had similar root mean squared errors (RMSE), except for scenarios with low group detection probability, where the Two-Step model had much lower RMSE. For illustration with a real data set, we applied the Two-Step and regular model to non-invasive genetic capture-recapture data of mountain gorillas (Gorilla beringei beringei). As with simulations, abundance estimates under both models were similar, but the Two-Step model estimate had a wider confidence interval. Results support using the Two-Step model for species living in constant groups, particularly when group detection probability is low, to reduce risk of bias and adequately portray uncertainty in abundance estimates. Important sources of variation in detection need to be incorporated into the Two-Step model when applying it to field data.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Modelos Biológicos , Animales , Conducta Animal , Simulación por Computador , Gorilla gorilla , Densidad de Población
17.
PLoS One ; 13(12): e0208057, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30540787

RESUMEN

Despite the popular use of hummingbird feeders, there are limited studies evaluating the effects of congregation, sharing food resources and increased contact when hummingbirds visit feeders in urban landscapes. To evaluate behavioral interactions occurring at feeders, we tagged 230 individuals of two species, Anna's and Allen's Hummingbirds, with passive integrated transponder tags and recorded their visits with RFID transceivers at feeders. For detecting the presence of tagged birds, we developed an RFID equipped feeding station using a commercially available antenna and RFID transceiver. Data recorded included the number of feeder visits, time spent at the feeder, simultaneous feeder visitation by different individuals, and identifying which feeders were most commonly visited by tagged birds. For the study period (September 2016 to March 2018), 118,017 detections were recorded at seven feeding stations located at three California sites. The rate of tagged birds returning to RFID equipped feeders at least once was 61.3% (141/230 birds). Females stayed at feeders longer than males per visit. We identified primary, secondary and tertiary feeders at Sites 2 and 3, according to the frequency of visitation to them, with a mean percentage of 86.9% (SD±19.13) visits to a primary feeder for each tagged hummingbird. During spring and summer, hummingbirds visited feeders most often in morning and evening hours. Feeder visits by males overlapped in time with other males more frequently than other females. The analysis of the contact network at the feeders did not distinguish any significant differences between age or sex. Although most hummingbirds visited the feeders during the daytime, our system recorded night feeder visitations (n = 7 hummingbirds) at one site. This efficient use of RFID technology to characterize feeder visitations and contact networks of hummingbirds in urban habitats could be used in the future to elucidate behaviors, population dynamics and community structure of hummingbirds visiting feeders.


Asunto(s)
Aves/fisiología , Seguimiento de Parámetros Ecológicos/métodos , Conducta Alimentaria/fisiología , Dispositivo de Identificación por Radiofrecuencia , Tecnología de Sensores Remotos/instrumentación , Animales , California , Ciudades , Seguimiento de Parámetros Ecológicos/instrumentación , Ecosistema , Femenino , Masculino , Factores Sexuales , Factores de Tiempo
18.
Ecol Evol ; 8(20): 10336-10344, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30397470

RESUMEN

With continued global changes, such as climate change, biodiversity loss, and habitat fragmentation, the need for assessment of long-term population dynamics and population monitoring of threatened species is growing. One powerful way to estimate population size and dynamics is through capture-recapture methods. Spatial capture (SCR) models for open populations make efficient use of capture-recapture data, while being robust to design changes. Relatively few studies have implemented open SCR models, and to date, very few have explored potential issues in defining these models. We develop a series of simulation studies to examine the effects of the state-space definition and between-primary-period movement models on demographic parameter estimation. We demonstrate the implications on a 10-year camera-trap study of tigers in India. The results of our simulation study show that movement biases survival estimates in open SCR models when little is known about between-primary-period movements of animals. The size of the state-space delineation can also bias the estimates of survival in certain cases.We found that both the state-space definition and the between-primary-period movement specification affected survival estimates in the analysis of the tiger dataset (posterior mean estimates of survival ranged from 0.71 to 0.89). In general, we suggest that open SCR models can provide an efficient and flexible framework for long-term monitoring of populations; however, in many cases, realistic modeling of between-primary-period movements is crucial for unbiased estimates of survival and density.

19.
Vet Microbiol ; 214: 75-80, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29408036

RESUMEN

Species of hemoplasmas have been described worldwide, but little information is available for wild felids. Between February 2000 and January 2010, blood samples were collected from 30 jaguars (Panthera onca) and 22 domestic cats (Felis catus) from the Cerrado, Pantanal and Amazon biomes of Brazil. In all samples molecular tests were performed for Mycoplasma haemofelis/Mycoplasma haemocanis (Mhf/Mhc), 'Candidatus Mycoplasma haemominutum' (CMhm) and 'Candidatus Mycoplasma turicensis' (CMt). Twenty-two (73.4%) jaguars and four domestic cats (18.2%) tested positive for infection with at least one feline hemoplasma: 73.4% jaguars from the three areas were positive for CMhm, 13.6% jaguars from the Pantanal and 50.0% from the Amazon were positive for Mhf/Mhc, and 9.1% of individuals from the Pantanal tested positive for CMt. Domestic cats from the Cerrado (28.6%) and the Pantanal (30.0%) were positive for feline hemoplasma. All but one jaguar from the three sites are healthy. One female adult jaguar showed low body weight and dehydration. This is the first record of feline hemoplasmas in free-ranging jaguars. The high prevalence of CMhm suggest the participation of jaguars in the maintenance of this hemoplasma in nature. Although susceptible to Mhf/Mhc and CMt, jaguars did not appear to participate in the maintenance of these agents in the environment. The involvement of domestic cats in the transmission of any of these hemoplasmas cannot be excluded.


Asunto(s)
Animales Salvajes/microbiología , Infecciones por Mycoplasma/epidemiología , Mycoplasma/aislamiento & purificación , Panthera/microbiología , Animales , Brasil/epidemiología , Enfermedades de los Gatos/microbiología , Enfermedades de los Gatos/transmisión , Gatos , Femenino , Mycoplasma/genética , Infecciones por Mycoplasma/sangre , Infecciones por Mycoplasma/microbiología , Infecciones por Mycoplasma/transmisión
20.
Ecol Evol ; 7(16): 6210-6219, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28861226

RESUMEN

Understanding population dynamics requires reliable estimates of population density, yet this basic information is often surprisingly difficult to obtain. With rare or difficult-to-capture species, genetic surveys from noninvasive collection of hair or scat has proved cost-efficient for estimating densities. Here, we explored whether noninvasive genetic sampling (NGS) also offers promise for sampling a relatively common species, the snowshoe hare (Lepus americanus Erxleben, 1777), in comparison with traditional live trapping. We optimized a protocol for single-session NGS sampling of hares. We compared spatial capture-recapture population estimates from live trapping to estimates derived from NGS, and assessed NGS costs. NGS provided population estimates similar to those derived from live trapping, but a higher density of sampling plots was required for NGS. The optimal NGS protocol for our study entailed deploying 160 sampling plots for 4 days and genotyping one pellet per plot. NGS laboratory costs ranged from approximately $670 to $3000 USD per field site. While live trapping does not incur laboratory costs, its field costs can be considerably higher than for NGS, especially when study sites are difficult to access. We conclude that NGS can work for common species, but that it will require field and laboratory pilot testing to develop cost-effective sampling protocols.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...